ЗЕБЗЕЕВА Снежана Юрьевна

ОСОБЕННОСТИ МИКРОБИОТЫ ВЛАГАЛИЩА, ПСИХОЛОГИЧЕСКОГО И ЦИТОКИНОВОГО СТАТУСА У ПАЦИЕНТОК С ПРИВЫЧНЫМ НЕВЫНАШИВАНИЕМ БЕРЕМЕННОСТИ

3.1.4. Акушерство и гинекология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Тверской государственный медицинский университет» Министерства здравоохранения Российской Федерации.

Научные руководители:

кандидат медицинских наук, доцент доктор медицинских наук, профессор

Стольникова Ирина Ивановна Червинец Юлия Вячеславовна

Официальные оппоненты:

доктор медицинских наук, профессор, ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России, заведующий 1-м родильным отделением Баев Олег

Баев Олег Радомирович

доктор медицинских наук, профессор, ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет» Минобрнауки России, заведующий кафедрой акушерства и гинекологии Пас

Пасман Наталья Михайловна

Ведущая организация — федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации.

Защита диссертации состоится «»	_ 2022 г. в часов на заседа-
нии диссертационного совета 21.1.010.01 при ф	едеральном государственном
бюджетном учреждении «Ивановский научно-	-исследовательский институт
материнства и детства имени В. Н. Городкова» М	инистерства здравоохранения
Российской Федерации по адресу: 153045, г. Ивано	ово, ул. Победы, д. 20.

С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУ «Ив НИИ М и Д им. В. Н. Городкова» Минздрава России, сайт: www.niimid.ru

Автореферат разослан	~	>>		2021	Γ
----------------------	----------	----	--	------	----------

Ученый секретарь диссертационного совета доктор медицинских наук, профессор

Панова Ирина Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

В Российской Федерации привычным невынашиванием называют самопроизвольное прерывание беременности у женщины не менее двух раз подряд до 37 недель. Его частота составляет от 2 до 5 % по оценкам различных авторов (Радзинский В.Е. и др., 2017; Унанян А.Л. и др., 2021). Среди основных причин привычного невынашивания выделяют: эндокринные факторы, аллоиммунные и аутоиммунные нарушения, патологию матки, патологию системы гемостаза. Одну из главных ролей в генезе привычного невынашивания играет инфекционный фактор - как вирусные, так и бактериальные инфекции (Айламазян Л.В., 2016; Синякова А.А. и др., 2018). Привычное невынашивание беременности оказывает негативное влияние на психическое здоровье женщины, характеризующееся повышенным уровнем тревожности, депрессии, эмоциональной лабильностью, раздражительностью (Батуев В.С., 2016; Добряков И.В. 2018). Указанные особенности, в свою очередь, оказывают неблагоприятное влияние на репродуктивное здоровье пациенток.

Учитывая медицинскую и социальную значимость проблемы невынашивания беременности, формирование путей ее коррекции является весьма важной задачей. Внедрение новых методов лечения привело к снижению репродуктивных потерь, но частота угрозы невынашивания по-прежнему остается высокой - 15-20% (Унанян А.Л. и др., 2021). Отсутствие четких представлений о механизме прерывания беременности препятствует проведению эффективной патогенетической терапии.

Принимая во внимание высокую частоту встречаемости различных ассоциаций микроорганизмов генитального тракта у пациенток с привычным невынашиванием, наличие у них хронического, зачастую вяло текущего воспаления (Kuon R.J. et al., 2017), которое сопровождается нарушениями иммунного ответа (Pitman H. et al., Prins J.R. et al., 2013), а также недостаток проведенных исследований для оценки влияния психологического состояния пациенток с выше указанной патологией на течение и наступление беременности, их взаимосвязь с работой иммунной системы, вызывает огромный интерес проведение исследования состава микробиоты влагалища данных больных, а также выделяемых микроорганизмами газовых сигнальных молекул, совместно с показателями иммунной системы и психологическими особенностями данного контингента женщин.

Степень разработанности темы

В результате многочисленных исследований было доказано, что инфекционный фактор играет одну из ведущих ролей в генезе привычного невынашивания беременности (Ковалева О.В., 2010; Синякова А.А., 2018; Ордиянц И.М. и др., 2019; Киоп R.J. et al., 2017). Инфекционные заболевания, как вирусные, так и бактериальные приводят к спонтанным абортам, преждевременным родам, преждевременному излитию околоплодных вод, к врожденным пневмониям, внутриутробному сепсису, порокам развития плода (Айламазян Л.В., 2016; Ордиянц И.М. и др., 2019). У женщин с привычным невынашивани-

ем беременности в 67 % случаев выявляют ассоциации патогенных и условнопатогенных микроорганизмов в соскобах эндометрия (Ковалева О.В., 2010; Пустонина О.А., 2019; Liu Y. Et al., 2018).

В норме доминирующее положение благодаря своим особенностям в составе вагинального микробиома занимают лактобациллы (90-95%), которые играют исключительную роль в поддержании в физиологической норме мочеполового тракта, предупреждая развитие в нем патологических изменений (Fuqua W.C., 2017). Микроорганизмы в биопленке непрерывно обмениваются между собой сигнальными молекулами, активирующими или приостанавливающими развитие сообщества. Относительно недавно учеными было доказано влияние газовых сигнальных молекул, выделяемых микробиотой желудочнокишечного тракта (окись азота, аммиак, сероводород и т.д.), действующих как нейромедиаторы и газотрансмиттеры, на функционирование нервной и иммунной систем человека (Althaus M., 2013; Ruduk C., 2019). К таким газам относятся: углекислый газ, монооксид углерода, аммиак, метан, окись азота, сероводород. За последние годы проведены немногочисленные исследования, показывающие чрезвычайно важную роль данных молекул в организме человека (Ryter S.W., 2013; Ruduk C., 2019).

Ранее причины невынашивания беременности рассматривались только в области акушерства и гинекологии, эндокринологии. Привычное невынашивание беременности является мощным стрессогенным фактором (Батуев В.С., 2016; Захаров А.И., 2017). Недавние исследования, проведенные в Финляндии, Японии (Hada K., 2018; Sugiura-Ogusawara M., 2013), продемонстрировали, что пациентки с диагнозом привычное невынашивание беременности страдают повышенной тревожностью, различной степенью выраженности депрессии. Психоэмоциональные особенности таких пациенток в свою очередь могут приводить к возникновению соматической патологии, нарушению репродуктивной функции.

В последние годы в литературе стали появляться данные о корреляции повышенной тревожности, состояния выраженной депрессии с изменениями уровня содержания факторов повреждения мозговой и нервной ткани (Han Y. et al., 2018; Besteher B., 2019; Koo J.W. et al., 2019): цилиарного нейротрофического фактора (Ciliary neurotrophic factor - CNTF), нейротрофического фактора головного мозга (Brain derived neurotrophic factor - BDNF), белка S-100 (ранее использовались только для оценки тяжести, эффективности лечения и прогнозирования таких заболеваний, как рассеянный склероз, болезнь Паркинсона, эпилепсия, ишемический и геморрагический инсульты и так далее), а также изменениями показателей состояния иммунитета (про- и противовоспалительных цитокинов, CD45, CD 30 – лимфоцитов) у пациентов с психологическими нарушениями (Pitman H. et al.; Prins J.R. et al., 2013; Lyang P.Y., 2015). Однако, проблема требует дальнейшего изучения. Учитывая достаточно высокую распространенность психологических нарушений среди пациенток, страдающих привычным невынашиванием беременности, исследование содержания данных биохимических маркеров в совокупности с показателями состояния иммунитета, особенностями микробиоты влагалища представляет значительный интерес с целью дальнейшего изучения патофизиологического обоснования этой распространенной в наше время патологии и поиска путей оптимизации ведения данных больных, прогнозирования исходов беременности и улучшения их перинатальных показателей.

Цель исследования: оценить особенности микробиоты влагалища, психологического, цитокинового статуса, маркеров повреждения мозговой и нервной ткани у женщин с привычным невынашиванием беременности, разработать способ прогнозирования преждевременных родов.

Задачи исследования

- 1. Провести сравнительный анализ данных анамнеза у беременных и небеременных женщин с привычным невынашиванием беременности, оценить особенности течения и исходов беременности.
- 2. Оценить спектр, частоту встречаемости и количество микробиоты влагалища у беременных и небеременных женщин с привычным невынашиванием беременности. Определить спектр газовых сигнальных молекул, выделяемых микроорганизмами влагалища, у беременных и небеременных женщин с привычным невынашиванием беременности.
- 3. Проанализировать уровни рефлексивности, личностной и ситуативной тревожности, депрессии, интернальности, личностных факторов принятия решений, качество жизни у беременных и небеременных женщин с привычным невынашиванием беременности.
- 4. Оценить уровень факторов повреждения мозговой и нервной ткани, факторов апоптоза, провоспалительных цитокинов в сыворотке крови у беременных и небеременных женщин с привычным невынашиванием беременности и установить их взаимосвязь с выше указанными психологическими нарушениями.
- 5. Разработать способ прогнозирования преждевременных родов у женщин с привычным невынашиванием беременности.

Научная новизна исследования

Впервые определен уровень газового спектра (NO, H_2S , CO, CO_2 , CH_4), продуцируемого микробиотой влагалища, у беременных и небеременных женщин с привычным невынашиванием. Выявлено повышение потребления микробиотой влагалища NO и выделения H_2S , CO, указывающих на формирование воспалительного процесса генитального тракта.

Впервые проведено исследование содержания в сыворотке крови у беременных и небеременных женщин с привычным невынашиванием факторов повреждения мозговой и нервной ткани (BDNF, S-100, CNTF). Установлено, что для женщин с привычным невынашиванием беременности как во время беременности, так и на этапе прегравидарной подготовки, характерно снижение содержания нейротрофического фактора головного мозга – BDNF и увеличение уровня белка S-100 по сравнению с женщинами без репродуктивных потерь.

Показана взаимосвязь изменения содержания факторов повреждения мозговой и нервной ткани (BDNF, S-100) с психологическими особенностями у

беременных и небеременных женщин с привычным невынашиванием беременности. Установлено, что существует прямая умеренная связь между содержанием BDNF и показателем качества жизни RP (показатель, характеризующий влияние физического состояния на ролевое функционирование), повышенным уровнем тревожности в данных группах пациенток; обратная умеренная связь отмечена между снижением содержания BDNF и показателем RE (отражает влияние эмоционального состояния на ролевое функционирование); прямая умеренная связь между изменением содержания белка S-100 и показателем качества жизни (RP) у беременных женщин с привычным невынашиванием.

Впервые установлено, уровни что уровни провоспалительных цитокинов (IL 1, IL 6) и маркеров апоптоза (TRAIL) в сыворотке крови женщин в первом триместре беременности могут являться прогностическими критериями преждевременных родов у пациенток с привычным невынашиванием беременности.

Теоретическая и практическая значимость работы

Расширены представления о роли микробиоты влагалища и газового спектра сигнальных молекул, продуцируемых ею, в формировании воспалительного процесса генитального тракта у женщин с привычным невынашиванием беременности; об особенностях психологического состояния данной категории пациенток, содержания в сыворотке крови маркеров повреждения мозговой и нервной ткани.

Разработан способ прогнозирования преждевременных родов у женщин с привычным невынашиванием на основании исследования содержания в сыворотке крови уровня провоспалительных цитокинов и маркеров апоптоза (Патент на изобретение «Способ оценки риска преждевременных родов у женщин с привычным невынашиванием беременности» № 270110 от 24.09.2019.)

Создана база данных: «Чувствительность к антибиотикам стафилококков, выделенных из полости рта, кишечника и влагалища людей с различными заболеваниями данных биотопов». Свидетельство государственной регистрации № 2020620644 от 08.04.2020.

Методология и методы исследования

Критерии включения/исключения объектов исследования:

Критерии включения:

- -беременные женщины с привычным невынашиванием беременности (в сроке до 13 недель гестации, не прошедшие прегравидарную подготовку)
- небеременные женщины с привычным невынашиванием беременности на этапе прегравидарной подготовки
- повторнобеременные женщины без репродуктивных потерь (в сроке до 13 недель гестации)
- небеременные женщины в возрасте от 18 до 40 лет без репродуктивных потерь.

Критерии исключения: наличие тяжелой соматической патологии, психических расстройств, инфекций, передаваемых половым путем, антифосфолипидного синдрома. Процедура выборки:

Обследовано 120 женщин фертильного возраста, которые были разделены на 4 группы:

- 1 группа беременные женщины с привычным невынашиванием беременности в сроке до 13 недель гестации, не прошедшие прегравидарную подготовку 30 человек.
- 2 группа небеременные женщины с привычным невынашиванием беременности на этапе прегравидарной подготовки -30 человек.
- 3 группа повторнобеременные пациентки без репродуктивных потерь в сроке до 13 недель гестации (группа контроля №1) 30 человек.
- 4 группа небеременные женщины без репродуктивных потерь (группа контроля №2) 30 человек.

Методы исследования:

- 1. Клинические методы исследования: клинико-статистический анализ: акушерско-гинекологическое обследование, осмотр терапевта, эндокринолога; клинический и биохимический анализ крови, общий анализ мочи, коагулограмма, определение группы крови и резус-фактора, ультразвуковое исследование органов малого таза с использованием аппарата GE Voluson E8 Expert.
- 2. Бактериологический метод выделения и идентификации микроорганизмов: спектр, частота встречаемости и количество микробиоты влагалища. Количество колоний выражали в lg KOE/см² или lg KOE/мл. Идентификация осуществлялась по биохимической активности с применением API систем (bioMereux). В работе использован программно-аппаратный комплекс Диаморф Цито (ДиаМорф, Россия). Для определения газовых сигнальных молекул, выделяемых и поглощаемых микробиотой влагалища, использован метод газовой хроматографии на приборе Хроматэк-кристалл 5000.2. Количество выделенных газов измеряли в ppm (от англ. parts per million, «частей на миллион»), млн или мд. 1 mg/mL = 1000 ppm, 1 ppm = 0.001 mg/mL.
- 3. Психодиагностическое обследование с помощью методики диагностики уровня рефлексивности Л.В.Карпова, опросника Т.В.Корниловой «Личностные факторы принятия решений», Локус-контроля, опросника Спилбергера для оценки уровня личностной и ситуативной тревожности, опросника Бека для оценки уровня депрессии, опросника качества жизни SF-36.
- 4. Определение биохимических маркеров повреждения мозговой и нервной ткани: нейротрофического фактора головного мозга, цилиарного нейротрофического фактора, белка S-100; маркеров апоптоза: Каспаза 1 и TRAIL; уровня цитокинов: IL1-beta, IL 2, IL 6, IL 4, IL 8 методом иммуноферментного анализа иммуноферментным анализатором «Униплан» Россия в сыворотке крови с использованием коммерческих наборов для определения уровня содержания BDNF, CNTF-RSD (Англия), белка S-100 CanAg (Швеция), интерлейкинов, TRAIL, Каспаза-1 Biosource (Бельгия).
- 5. Статистическая обработка данных с использованием пакетов программы IBM SPSS Statistics version 22 (Официальная лицензия от 21.02.2018 г.) и WINPEPI version 11.65 (J.H. Abramson, 2016): использование критерия Манна-

Уитни, критерия X^2 , метод корреляционного анализа Спирмена, бинарной логистической регрессии, ROC-анализ.

Положения, выносимые на защиту

- 1. Беременные и небеременные женщины с привычным невынашиванием имеют особенности в спектре, частоте встречаемости и количестве микробиоты влагалища. У данных пациенток отмечается отличный от женщин без репродуктивных потерь спектр газовых сигнальных молекул, выделяемых вагинальной микробиотой.
- 2. Пациентки с привычным невынашиванием беременности, как во время беременности, так и на этапе прегравидарной подготовки, имеют более высокие показатели личностной и ситуативной тревожности по сравнению с группами контроля, а также характеризуются более высоким уровнем рефлексивности, депрессии.
- 3. Беременные и небеременные женщины с привычным невынашиванием имеют отличные в сравнении с группами здоровых беременных и небеременных женщин уровни содержания маркеров повреждения мозговой и нервной ткани, содержания провоспалительных цитокинов, факторов ингибитора апоптоза.
- 4. Существует взаимосвязь между психологическими особенностями данной категории больных и отклонениями содержания факторов повреждения мозговой и нервной ткани.

Внедрение результатов в практику

Результаты проведенных исследований, в том числе способ оценки риска преждевременных родов у женщин с привычным невынашиванием беременности внедрены в практику работы ГБУЗ Тверской области «Областной родильный дом».

Личный вклад автора

Автор непосредственно участвовал на всех этапах диссертационного исследования. Автором осуществлен отбор пациенток в группы, их обследование, написание статей по теме диссертационного исследования. Лично автором проведен анализ медицинской документации, выполнен анализ современной литературы, статистическая обработка данных, обобщение полученных результатов. Автор проводил сбор и транспортировку материала в учебно-научную бактериологическую лабораторию ФГБОУ ВО Тверского ГМУ Минздрава России. Результаты исследований представлены автором в виде докладов на конференциях и публикациях.

Апробация работы

Основные положения работы доложены на заседании кафедры акушерства и гинекологи, кафедры микробиологии и вирусологии с курсом иммунологии ТГМУ, на ІІ международной конференции: «Качество жизни: современные риски и технологии безопасности», Тверь, 2017 г., на VII Всероссийской научно-практической конференции с международным участием «Современные аспекты исследования качества жизни в здравоохранении», Москва, 2017 г., на

Всероссийской конференции молодых ученых «Актуальные вопросы экспериментальной и клинической медицины», г. Санкт-Петербург, 2019 г., на научнопрактической конференции молодых ученых «Эстафета молодежной науки: новые имена в науке», г. Тверь, 2020 г.

Публикации

По теме диссертационного исследования опубликовано 13 печатных работ, из них 3 в рецензируемых журналах, рекомендованных ВАК Минобрнауки России для публикаций научных результатов диссертаций.

Структура и объём диссертации

Диссертация изложена на 112 страницах машинописного текста и состоит из введения, четырёх глав, выводов, практических рекомендаций, списка литературы, состоящего из 199 отечественных и зарубежных источников. Работа иллюстрирована 18 рисунками и 24 таблицами.

СОДЕРЖАНИЕ РАБОТЫ Результаты исследований и их обсуждение

Средний возраст обследуемых женщин составил 29,4 года. Значимых различий при оценке данного показателя между исследуемыми группами не обнаружено. При оценке соматического анамнеза выявлено, что он был чаще отягощен у пациенток групп привычного невынашивания: отмечены значимые различия (p=0.02, $x^2=4.812$) по частоте встречаемости заболеваний мочевыделительной системы (хронический пиелонефрит, цистит) между пациентками с привычным невынашиванием беременности на этапе прегравидарной подготовки (2 группа) и небеременными женщинами без репродуктивных потерь (4 группа). У пациенток с привычным невынашиванием беременности чаще имелись указания на предшествующую эндокринную патологию. В структуре болезней этой категории чаще всего встречались: гиперпролактинемия – у 23 и 17 % пациенток 1 и 2 групп, и синдром поликистозных яичников (СПКЯ) – у 33% и 37% соответственно. Выявлены статистически значимые различия по частоте встречаемости СПКЯ (p<0,05, x^2 =6,667) и гиперпролактинемии (p<0,05, $x^2=5,192$) при сравнении 1 и 3, а также 2 и 4 (p<0,05, $x^2=7,954$, p<0,05, $x^2=5,455$) групп пациенток. Также отмечена высокая частота инфекционных заболеваний урогенитального тракта (у 53 и 57% пациенток 1 и 2 групп в анамнезе имеется указание на хронический сальпингоофорит, у 40% - на урогенитальные инфекции); выявленные различия по частоте встречаемости хронических воспалительных заболеваний органов малого таза, урогенитальных инфекций в анамнезе при сравнении между 1 и 3 группами (p=0,002, $x^2=10.8$ и p=0,008, $x^2=7.2$ соответственно), 2-ой и 4-ой группами являются значимыми (p<0,001, x²=14,7 и p=0,01, x²=6,48 соответственно). При анализе неинфекционных гинекологических заболеваний выявлено, что во всех группах преобладали: миома матки – встречалась у 6 % пациенток 1 и 3 групп, у 10 % и 3 % во 2 и 4 группах; эндометриоз – у 12% женщин 1 и 4 групп, у 6 % во 2 группе и у 10 % в 3 группе (p>0,05). Течение беременности у пациенток с привычным невынашиванием по сравнению с беременными женщинами без репродуктивных потерь чаще сопровождалось угрозой прерывания (67%), инфекцией мочевыводящих путей (40%) и плацентарной недостаточностью (47%) (p<0,05). При оценке исходов беременности выявлено, что у беременных женщин с привычным невынашиванием по сравнению со здоровыми беременными чаще наблюдались преждевременные роды (p<0,001, $x^2 = 34,1$) – в 30% случаев, самопроизвольный выкидыш (p<0,05, $x^2 = 5,45$) – у 20% пациенток.

Микробиоценоз влагалища женщин с привычным невынашиванием беременности

Микробиота влагалища небеременных женщин без репродуктивных потерь (4 группа) представлена в основном лактобациллами (66,6% выявлений), энтерококками (57,6%), бифидобактериями (48,5%). Реже выделялись эпидермальные стафилококки, пептококки, пептострептококки, бациллы, грибы рода Candida, бактероиды. У женщин первых 3 групп во влагалище доминируют не лактобациллы, а энтерококки, которые встречаются в 60% случаев и более. Лактобациллы выявлялись у 37,5 и 27 % пациенток 1 и 3 групп и их количество у беременных женщин с привычным невынашиванием составляло - 3,81, а у здоровых беременных - 3,87 lg KOE/см². У небеременных женщин с привычным невынашиванием беременности они почти не встречались, только у 6,7% - в незначительном количестве (2,77 lg KOE/см²) (таблица 1).

При сравнительном анализе среднего количества микроорганизмов у обследуемых пациенток 1 и 3 групп выявлены значимые различия в содержании: S.aureus, Micrococcus spp., Enterococcus spp., Klebsiella spp., E.coli, Peptococcus spp., Veilonella spp., Actynomices spp., Stomatococcus spp. У пациенток 2 и 4 групп значимые различия в содержании: S.aureus, Staphylococcus spp, Micrococcus spp., E.faecalis., Lactobacillus spp., Peptococcus spp., Klebsiella spp., E.coli, Clostridium spp, Bacteroides spp., Stomatococcus spp., Proteus vulgaris (p<0,05 во всех случаях).

В ходе работы выявлены дисбиотические нарушения микробиома влагалища как у беременных, так и у небеременных женщин, причем в большей степени выраженности у пациенток с привычным невынашиванием беременности. На фоне снижения содержания лактобацилл, условно-патогенные микроорганизмы поддерживают воспалительные процессы в генитальном тракте у женщин, оказывая неблагоприятное влияние на наступление и течение беременности.

Таким образом, при сравнительном анализе среднего количества микроорганизмов у обследуемых пациенток 1 и 3 групп (беременные женщины с привычным невынашиванием и беременные без репродуктивных потерь), 2 и 4 групп (небеременные женщины с привычным невынашиванием и без репродуктивных потерь) выявлены значимые различия (p<0,05) в содержании лактобацилл и условно-патогенной микробиоты.

Таблица 1

Среднее количество и частота встречаемости микроорганизмов во влагалище обследуемых

во влагалище ооследуемых								
Микроорганизм	Групп	Группа 1 Груг		па 2 Группа 3		Группа 4		
	Сред.	%	Сред.	%	Сред.	%	Сред.	%
	lg KOE/		lg KOE/		lg KOE/		lg KOE/	
	cm ²		cm ²		cm ²		cm ²	
S.aureus	3,3	25	5,17	6,66	2,42	20	-	-
	p1<0,05		p2<0,05					
Staphylococcus spp.	2,9	62,5	2,84	26,7	2,66	53,3	-	-
			p2<0,05					
Micrococcus spp.	1,47	6,25	2,63	33,3	2,37	20	-	-
	p1<0,05		p2<0,05					
Enterococcus spp.	3,49	62,5	3,41	60	2,62	60	4,48	57,6
	p1<0,05							
E.faecalis	2,84	43,7	3,11	46,7	2,59	40	-	-
			p2<0,05					
Lactobacillus spp.	3,81	37,5	2,77	6,67	3,87	27	3,79	66,6
			p2<0,05					
Klebsiella spp.	3,61	43,7	4,19	26,7	5	46,6	-	-
	p1<0,05		p2<0,05					
E.coli	2,23	12,5	5,06	13,3	-	-	-	-
7	p1<0,05	21.2	p2<0,05	22.2	6.00	10.0		25.5
Peptococcus spp.	4,95	31,2	4	33,3	6,08	13,3	5,5	36,6
D	p1<0,05	25	p2<0,05	20	4.60	20	<i></i>	22.2
Peptostreptococcus spp.	4,75	25	5,4	20	4,69	20	5,5	33,3
Clostridium spp.	5,86	18,7	6,95	6,66	5,61	27	_	_
11	,	,	p2<0,05	,	,			
Veilonella spp.	4,17	12,5	4,41	13,3	5,04	20	4,77	6,06
11	p1<0,05		,	,	ĺ			Ź
Bacteroides spp.	4	6,25	3,69	6,66	4,2	40	5,8	18,2
**			p2<0,05					
Candida spp.	3,97	37,5	3,83	33,3	3,1	13,3	3,7	21,2
Bacillus subtilis	2,96	37,5	3,38	40	2,3	40	3,9	27,3
Gardnerella spp.	5,17	6,25	6,95	6,66	5,17	6,66	6,77	3,03
Bifidobacterium spp.	4,87	12,5	-	-	4,95	6,66	4,36	48,5
Actynomyces spp.	4,95	12,5	-	-	-	-	5,47	3,03
	p1<0,05							
Stomatococcus spp.	1,77	6,25	3,08	6,66	-	-	-	-
	p1<0,05		p2<0,05					
Neisseria spp.	5,08	6,25	-	-	-	-	-	-
	p1<0,05							
Proteus vulgaris	-	-	5,17	6,66	-	-	-	-
			p2<0,05					
Streptococcus spp.	-	-	-	-	-	-	-	-

Продукция газовых сигнальных молекул влагалищной микробиоты женщин с привычным невынашиванием беременности

При анализе выделяемых и потребляемых газовых сигнальных молекул микрофлорой влагалища было установлено, что у женщин с привычным невынашиванием беременности как во время беременности, так и на этапе прегравидарной подготовки (1 и 2 группы) микроорганизмы рода *Candida*, *Enterococcus*, *Staphylococcus* и семейства *Enterobacteriaceae* в наибольшей степени выделяют CO₂, CO и H₂. При попарном сравнении групп женщин без репродуктивных потерь (3 и 4 группы) и пациенток с привычным невынашиванием (1 и 2 группы) у последних достоверно больше происходит выделение H₂S, CO и потребление NO (уровень значимости р<0,05 во всех случаях), а у здоровых – выделение CH₄.

Из материала исследуемых групп пациенток были выделены лактобациллы, относящиеся К следующим видам: L.rhamnosus, L.salivarius. L.acidophilus, L.fermentum, L.plantarum, L.buchneri, L.paracasei spp.paracasei. B процессе своей жизнедеятельности лактобациллы вырабатывают разнообразные газовые сигнальные молекулы, но наиболее значимыми были результаты у беременных и небеременных женщин без репродуктивных потерь (3,4 группы) по трем газам: CO₂, CO и NO. Все выделенные штаммы лактобацилл выделяют большую концентрацию CO_2 (117425,7 ppm), и активно потребляют O_2 (-7 ppm) и N_2 (-18 ppm). Продукция СО была зарегистрирована у 77% лактобацилл (431,37 ррт). Окись азота вырабатывали 90% штаммов лактобацилл в основном относящимся к видам L. fermentum и L.plantarum в разных концентрациях (от 100 до 23752 ppm). Продукция других газов (H_2 , CH_4 , H_2S) была очень низкой.

Что касается лактобацилл небеременных пациенток с привычным невынашиванием беременности (2 группа) и небеременных женщин без репродуктивных потерь (4 группа), то наиболее значимые результаты были получены также по трем газовым сигнальным молекулам: СО, NO и CO_2 . Концентрации данных газов оказались значительно ниже у небеременных пациенток с привычным невынашиванием беременности (продукция NO составила Me - 322 ppm), чем в 4 группе контроля (NO – Me 3568 ppm). Данные различия являются статистически значимым при попарном сравнении групп (p<0,05, Критерий Манна-Уитни - 262). Также гораздо ниже оказалась продукция CO в исследуемых группах: Me – 51,3 ppm, что также является значимым (p<0,05, критерий Манна-Уитни - 289). Продукция же двух других газов H_2 S и CH_4 в основной группе была выше (для H_2 S Me = 7,4, критерий Манна-Уитни 13,5, p<0,01, для CH_4 Me = 2,81, p<0,05, критерий Манна-Уитни — 100)

При анализе продукции газовых сигнальных молекул лактобациллами у беременных пациенток с привычным невынашиванием (1-я группа) и беременных женщин без репродуктивных потерь (3 группа), как и в предыдущем случае, у лактобацилл наблюдалась наиболее активная продукция трех газовых сигнальных молекул: NO (359 и 2305 ppm), CO (61,4и 154 ppm), CO₂ (79585 и 66374 ppm), и потребление N_2 и O_2 .

Статистически значимые различия между исследуемыми группами наблюдались в продукции: NO (критерий Манна-Уитни=9, p<0,05), H₂S (критерий Манна-Уитни=8, p<0,05).

Известно, что у человека NO регулирует региональный ток крови, транспорт воды и электролитов, иммунитет, энергетический метаболизм, выступает в качестве нейротрансмиттера в головном мозге, периферической нервной системе. NO регулирует сигнальную, детоксикационную и антиоксидантную функции у бактерий (Althaus M., 2013; Ruduk C., 2019). В результате проведенных исследований было установлено, что микроорганизмы рода *Candida, Enterococcus, Staphylococcus* и семейства *Enterobacteriaceae* в исследуемых группах женщин с невынашиванием беременности (1, 2 группы) в большем количестве по сравнению с пациентками, не имеющими репродуктивных потерь (3 и 4 группы), потребляют данный газ (р<0,05). Исключение составляют бактерии рода Lactobacillus, выделенные как от беременных, так и у небеременных женщин с привычным невынашиванием беременности, которые вырабатываю NO в тысячу раз больше по сравнению с другими микроорганизмами.

В настоящее время также установлено, что различные растения и животные могут продуцировать другой газ – монооксид углерода (СО) как промежуточный продукт деградации гемма специализированными гемоксигеназами. Молекулы СО в низких концентрациях оказывают свои различные биологические эффекты: обладает антивоспалительным и антипролиферативным действием, данный газ ингибирует активацию и пролиферацию E-эффекторных клеток, подавляет образование гистамина базофилами, ингибирует миграцию полиморфоядерных клеток (Ryter S.W., 2013). Однако, при повышение концентрации CO является активатором воспаления (Peer C., 2012). Все микроорганизмы, выделенные от пациенток с привычным невынашиванием беременности (1,2 группы), вырабатывают концентрацию данного газа, превышающую таковую по сравнению с женщинами, не имеющими репродуктивных потерь (3,4 группы) (р<0,05 во всех случаях). Выявленные особенности указывают на то, что СО не может в полном объеме выполнять свои защитные функции. Что касается СО, продуцируемого лактобациллами от женщин с привычным невынашиванием беременности, то его концентрация в 10 раз превышает таковую у других микроорганизмов.

Продуцируемый также в большем количестве H_2S у пациенток с привычным невынашиванием беременности по сравнению с женщинами, не имеющими репродуктивных потерь, является цитопротектором в сердечнососудистой системе, играет роль в регуляции высвобождения инсулина, в торможении синтеза глюкокортикоидов при стрессе, влияет на деятельность нервной системы, а также стимулирует процесс ангиогенеза (Kimura H., 2015). Все микроорганизмы, выделенные от пациенток с привычным невынашиванием беременности, вырабатывают высокую концентрацию H_2S (в несколько раз/десятков раз больше) по сравнению со здоровыми женщинами, что указывает на то, что данный газ не может в полном объеме выполнять свои защитные функции

При попарном сравнению групп пациенток (1 и 3, 2 и 4) различия в продукции H_2S микроорганизмами рода *Candida, Enterococcus, Staphylococcus* и семейства *Enterobacteriaceae* являются статистически значимыми (p<0,05 во всех случаях). Самую высокую концентрацию продуцировали бактерии семейства Enterobacteriaceae по сравнению с другими микроорганизмы.

Таким образом, выявленные дисбиотические нарушения микробиома влагалища у пациенток с привычным невынашиванием беременности, (уменьшение содержания лакто- и бифидобацилл, преобладание условно-патогенных микроорганизмов), сопровождаются изменениями выделения и поглощения газовых сигнальных молекул, участвующих в формировании воспалительного процесса (NO, $\rm H_2S$ и CO).

Психологический статус женщин с привычным невынашиванием беременности

При оценке уровня рефлексивности с помощью опросника А.В. Карпова высокий ее уровень был выявлен у 17% небеременных пациенток с привычным невынашиванием беременности (2-я группа) и у 13% здоровых беременных женщин (3-я группа) и у 12 % здоровых небеременных женщин (4-я группа). В 1-ой группе (беременные с ПНБ) женщины с высоким уровнем рефлексивности отсутствуют. Низкий уровень рефлексивности выявлен у 17% женщин 2-ой группы, у 33% 3 группы, у 33% пациенток 1-ой группы и 10 % 4-ой группы. При попарном сравнении уровня рефлексивности в 1 и 3, 2 и 4 группах с использованием критерия х² статистически значимых различий выявлено не было (р>0,05).

Опросник «Личностные факторы принятия решений» (ЛФР) измеряет готовность к риску и рациональность. Заниженные показатели рациональности продемонстрировали 33% беременных с привычным невынашиванием (1-я группа), 30% небеременных с привычным невынашиванием (2-я группа), по 3% здоровых беременных (3-я группа) и здоровых небеременных женщин (4-я группа). Данные различия являются статистически значимыми между респондентками 1-ой и 3-ей групп, 2-ой и 4-ой групп (р=0,005, x²=9 и р=0,01, x²=7,68 соответственно). Завышенные же показатели рациональности выявлены у 50% пациенток 1-ой группы, 28% 2-ой группы, 56% 3-ей группы, 42% 4-ой группы (различия статистически не значимы). Заниженные показатели готовности к риску были выявлены у 33% пациенток 1-ой группы, 50% - 3-ей группы — данные различия не значимы, а также 33 % - 2-ой группы и 10 % 4-ой группы (р>0,05).

Что касается оценки общей интернальности, то наибольший процент женщин с его низким значением также выявлен во 2-ой группе (небеременных с привычным невынашиванием) - 40 %, что значимо выше, чем у пациенток 4-ой группы (небеременных без репродуктивных потерь) — у 10 % ($x^2=7,2,$ p=0,008). В остальных группах эти цифры также значительно ниже - 10 и 17 % в 1 и 3 группах.

С помощью тест-опросника Бека для определения уровня депрессии среди обследуемого контингента были выявлены следующие особенности.

Значительно чаще остальных групп умеренно выраженная и выраженная депрессия встречались у пациенток с привычным невынашиванием беременности, причем как у беременных, так и на этапе прегравидарной подготовки: 46 % и 60 %. Эти цифры выше, чем у здоровых пациенток: 13% (критерий $x^2=8$ и p=0,005 при сравнении 1-ой и 3-ей групп и $x^2=14$, p<0,0001 при сравнении 2-ой и 4-ой групп соответственно).

На основании данных опросника качества жизни SF-36 у обследуемого контингента были выявлены следующие закономерности. Показателями, снижающими качество жизни у пациентов первой группы, являются: влияние физического состояния на ролевое функционирование (RP 22,5), интенсивность боли (Р 30.0), влияние эмоционального состояния на ролевое функционирование (RE 10,0). У пациенток второй группы показателем, снижающим качество жизни, является влияние эмоционального состояния на ролевое функционирование (RE 9,9). В третьей группе (беременные женщины без репродуктивных потерь) показателем, снижающим качество жизни пациенток, является социальное функционирование (общение). В четвертой группе (небеременные женщины без репродуктивных потерь) показателей, снижающих качество жизни нет, что свидетельствует о полноценном социальном, физическом и эмоциональном функционировании. Обработка данных при помощи непараметрического критерия U Манна Уитни позволила выявить ряд достоверных различий в показателях жизни пациенток 1-й и 3-й групп. Так значимыми (p<0.05) явились различия по шкалам: PF (p=.000); RP (p=.000); P (p=.000); GH (p =,008); SF (p =,016); RE (p =,000); MN (p =,000). У пациенток 2 и 4 групп значимыми (p < 0.05) явились различия по шкалам: PF (p = .000); RP (p = .001); P (p = 0.00); GH (p = 0.00); VT (p = 0.043); RE (p = 0.000); MN (p = 0.002).

Биохимические и иммунологические исследования

Анализ биохимических показателей позволил установить, что содержание BDNF в плазме крови у пациенток первых 2-х групп статистически не отличалось (p>0,05). Вместе с тем отмечено, что уровень данного маркера повреждения мозговой ткани у пациенток с привычным невынашиванием беременности на этапе прегравидарной подготовки (2 группа) оказался значимо ниже, чем у пациенток 4-ой группы, такая же закономерность отмечена и при сравнении беременных пациенток с отягощенным по невынашиванию анамнезом (1 группа) со здоровыми беременными (3 группа) (критерий Манна-Уитни – 78, значимость p=0,008 и критерий Манна-Уитни - 126, p=0,004 соответственно).

Исследование цилиарного нейротрофического фактора (CNTF) у пациенток всех групп статистически значимых различий не выявило.

Установлено, что количество специфического белка астроцитарной глии S-100, у пациенток 1-ой и 2-ой групп достоверно выше, чем его уровень у пациенток 3 и 4 групп (критерий Манна-Уитни — 39,5, p<0,0001, критерий Манна-Уитни — 54, p<0,0001 при попарном сравнении групп) (табл.2).

Таблица 2

Содержание маркеров повреждения мозговой и нервной ткани в сыворотке крови обследуемых - Ме (Q1; Q3)

		, 10	(
Показатели	Группа 1	Группа 2	Группа 3	Группа 4
BDNF пг/мл	9,1	8,5	17,1	18,9
	(7,2;11)	(4,8;11,2)	(14,7;19,5)	(15,4;23,4)
	p1=0,004	p2=0,008		
CNTF	8,9	9,4	4,8	5,5
пг/мл	(8,6;9,3)	(9,2;9,6)	(4,3;5,3)	(5,2;5,8)
S-100	0,19	0,18	0,1	0,12
Пг/мл	(0,17;0,21)	(0,16;0,2)	(0,09;0,11)	(0,09;0,15)
	p1<0,0001	p2<0,0001		

Примечание: p1 — значимость различий между группами 1 и 3, p2 —значимость различий между группами 2 и 4

Установлено, что существует прямая умеренная связь между BDNF и показателем качества жизни RP (показатель, характеризующий влияние физического состояния на ролевое функционирование): r=0,364 и r=0,362, повышенным уровнем тревожности в 1,2 группах пациенток с привычным невынашиванием (r=0,364 и r=0,362, r=0,523 и r=0,568 соответственно), BDNF и интенсивностью боли в первой группе (r=0,450). Обратная умеренная связь отмечена между изменением содержания BDNF и показателем RE (отражает влияние эмоционального состояния на ролевое функционирование) у беременных и небеременных с привычным невынашиванием (r= - 0,459 и r= - 0,463 соответственно). Выявлена прямая умеренная связь между увеличением содержания белка S-100 и показателем RP качества жизни у беременных женщин с привычным невынашиванием (r=0,364).

Анализ содержания провоспалительных цитокинов и маркеров апоптоза в сыворотке крови у обследуемого контингента показал, что содержание интерлейкинов IL 2 и IL 8 в исследуемых группах статистически не отличалось. В то же время уровни IL 6, IL1-beta, и IL 4 оказались достоверно выше у беременных и небеременных женщин с привычным невынашиванием в 1 и 2 группах по сравнению со здоровыми (3,4 группы) (р<0,05), что указывает на изменения иммунного ответа при развитии патологии (табл.3). Это согласуется с данными других авторов (Pitman H., 2013; Prins J.R., 2012), в частности, есть сведения об увеличении содержания IL6, являющегося фактором дифференцировки В-лимфоцитов, характерного для условий воспалительного процесса, а также IL 4, свидетельствующего о подавлении иммунного ответа.

Таблица 3 Содержание цитокинов в сыворотке крови обследуемых – Me (Q1; Q3)

Биохимические по-	Группа 1	Группа 2	Группа 3	Группа 4
казатели				
IL 1-beta пг/мл	41,2 (37,8; 44,6)	44,5 (38,9; 50,1)	28,4 (25;31,9)	29,2 (24,4;35)
	p1<0,01	p2<0,01		

IL 2 пг/мл	13,9	14,1	13,2	12,8
	(12,6;15,2)	(12,9;15,3)	(11,8;14,6)	(11,3;14,3)
IL 4 пг/мл	25	25,2	14,7	15,7
	(22,1;27,9)	(21,5;28,9)	(12,6;16,8)	(12,4;19)
	p1<0,0001	p2<0,0001		
IL 6 пг/мл	6,0	6,1	4,1	3,5
	(5,6;6,4)	(5,6;6,6)	(3,5;4,7)	(3,1;3,9)
	p1<0,0001	p2<0,0001		
IL 8 пг/мл	15,6	15,8	13,9	13,5
	(12,3;18,9)	(12,1;19,5)	(12,2;15,6)	(11,5;15,5)

Примечание: p1 - значимость различий между группами 1 и 3 группами, p2 — значимость различий между группами 2 и 4 группами

При исследовании содержания маркеров апоптоза - TRAIL, Каспаза-1 в сыворотке крови, также выявлено статистически значимое увеличение показателя TRAIL у пациенток с привычным невынашиванием в обеих группах (1,2) по сравнению с женщинами, не имеющими репродуктивных потерь (3,4 группы). Указанные изменения свидетельствуют об особенностях функциональной активности нервной системы, нейропротекции и иммунного ответа (Liang R.Y., 2015) (таблица 4).

Таблица 4 Содержание маркеров апоптоза в сыворотке крови у обследуемых – Ме (Q1; Q3)

Показатели	Группа 1	Группа 2	Группа 3	Группа 4
TRAIL пг/мл	107,5	122	73,5	69,1
	(98,6;116,4)	(101;143)	(62,1;84,4)	(59;79,2)
	p1<0,0001	p2<0,0001		
Каспаза – 1 пг/мл	54,8	54	44,4	46,8
	(51,8;57,8)	(51,4;56,6)	(41,2;46,6)	(45,8;47,8)

Примечание: p1 - значимость различий между группами 1 и 3, p2-значимость различий между 2 и 4 группами

При сравнительном анализе содержания уровня цитокинов и маркеров апоптоза между пациентками 1 и 3 групп, у которых беременность завершилась преждевременными и своевременными родами, выявлены статистически значимые различия в содержании IL 6 (p<0,01, критерий Манна-Уитни – 5), IL 1 (p<0,01, критерий Манна-Уитни — 8,3) и TRAIL (p<0,05, критерий Манна-Уитни — 6,3).

На основании проведенных биохимических исследований с использованием бинарной логистической регрессии была разработана формула для расчета риска преждевременных родов:

р (преждевременных родов) = $1/(1+e^{-z})$,

где р (преждевременных родов) — это значение риска наступления преждевременных родов; е — основание натуральных логарифмов (число Эйлера = 2,718); значение z рассчитывается по формуле: $z = 1,207 \times \Pi1 + 0,723 \times \Pi2 - 1,823 \times \Pi3 + 5,361$, где B1=1,207, B2=0,723 и B3=-1,823 — значения коэффициентов B для IL 1, IL 6 и TRAIL, B0=5,361 — константа уравнения, а $\Pi1$, $\Pi2$ и $\Pi3$

– фактические значения уровней IL 1, IL 6 и TRAIL в сыворотке крови у конкретной пациентки.

В данной формуле учитываются уровни содержания провоспалительных цитокинов (IL 1, IL 6) и маркера апоптоза (TRAIL) в сыворотке крови в первом триместре беременности у женщин с отягощенным анамнезом. Формула позволяет рассчитать риск наступления преждевременных родов у конкретной пациентки при использовании биохимических параметров крови. Модель является высокочувствительной и специфичной.

Таким образом, в ходе данной работы выявлены дисбиотические нарушения микробиома влагалища как у беременных, так и у небеременных женщин, причем в большей степени выраженности у пациенток с привычным невынашиванием беременности. У беременных и небеременных женщин с привычным невынашиванием отмечается отличный от здоровых женщин спектр газовых сигнальных молекул, выделяемых вагинальной микробиотой (NO, H₂S, CO). Женщины с привычным невынашиванием беременности как во время беременности, так и на этапе прегравидарной подготовки, имеют психологические особенности, а именно: более высокие показатели личностной и ситуативной тревожности по сравнению с группами контроля, а также характеризуются более высоким уровнем рефлексивности, депрессии. Пациентки с привычным невынашиванием беременности имеют отличные от нормальных показателей уровни содержания нейротрофического фактора головного мозга (BDNF), белка S-100. Были установлены корреляционные взаимосвязи между изменением содержания маркеров повреждения мозговой и нервной ткани и психологическими особенностями данной категории пациенток. Также у обследуемых выражены отклонения в показателях работы иммунной системы: повышены уровни содержания провоспалительных цитокинов (IL 4, IL 6, IL1beta), фактора ингибитора апотоза (TRAIL).

ВЫВОДЫ

- 1. У беременных и небеременных женщин с привычным невынашиванием беременности и беременных без репродуктивных потерь во влагалище доминируют энтерококки, которые встречаются в 60% случаев и в количестве от 2,62 до 3,49 lg KOE/cм². Лактобациллы выявлялись у 37,5% беременных пациенток с привычным невынашиванием (3,81 lg KOE/cм²). У небеременных женщин с привычным невынашиванием лактобациллы встречались только у 6,7% и в количестве менее 3 lg KOE/cм².
- 2. У женщин с привычным невынашиванием беременности как во время беременности, так и на этапе прегравидарной подготовки, микроорганизмы рода *Candida*, *Enterococcus*, *Staphylococcus* и семейства *Enterobacteriaceae*, чаще выделяют газовые сигнальные молекулы (СО и H₂S) и потребляют NO, участвующие в формировании воспалительного процесса генитального тракта. Лактобациллы, выделенные как у беременных, так и у небеременных женщин с привычным невынашиванием беременности, вырабатывают NO в сто раз больше по сравнению с другими микроорганизмами.

- 3. У пациенток с привычным невынашиванием беременности сравнительно с женщинами без репродуктивных потерь психологическое состояние характеризуется высокой частотой регистрации повышенного уровня ситуативной и личностной тревожности (у 33 % беременных и 60 % небеременных женщин), депрессии (46 и 60% соответственно). В группе беременных с привычным невынашиванием выше доля женщин с низким уровнем рефлексивности и завышены показатели рациональности, при этом занижены показатели готовности к риску. У небеременных с привычным невынашиванием беременности выявлена наибольшая представленность женщин с высоким уровнем рефлексивности, чаще встречались низкие значения показателя общей интернальности. Показателями, снижающими качество жизни у беременных с привычным невынашиванием, являются: влияние физического и эмоционального состояния на ролевое функционирование, интенсивность боли; в группе небеременных с привычным невынашиванием эмоциональное состояние.
- 4. У беременных и небеременных женщин с привычным невынашиванием беременности по сравнению со здоровыми женщинами выявлено снижение в периферической крови содержания маркера повреждения мозговой и нервной ткани BDNF и увеличение уровня белка S-100, а также увеличение уровня провоспалительных цитокинов IL 4, IL 6, IL1-beta, маркера апоптоза TRAIL.
- 5. Установлена прямая умеренная корреляционная связь между маркером BDNF и показателем качества жизни RP (отражает влияние физического состояния на ролевое функционирование), обратная умеренная связь отмечена между содержанием BDNF и показателем RE (отражает влияние эмоционального состояния на ролевое функционирование) у беременных и небеременных с привычным невынашиванием, а также между содержанием BDNF и уровнем тревожности в обеих группах; и только у пациенток первой группы между BDNF и интенсивностью боли. Выявлена прямая умеренная связь между изменением содержания белка S-100 и показателем RP качества жизни у беременных с привычным невынашиванием.
- 6. На основании исследования уровня содержания провоспалительных цитокинов и маркера апоптоза возможно прогнозирование наступления преждевременных родов у пациенток с привычным невынашиванием беременности.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Тактика ведения пациенток с привычным невынашиванием беременности на этапе прегравидарной подготовки должна предусматривать обязательную коррекцию дисбиотических нарушений микробиома влагалища (уменьшение содержания лакто- и бифидобацилл, преобладание условно-патогенных микроорганизмов) с последующим восстановлением достаточного уровня лакто- и бифидобацилл путем назначения метабиотиков и синбиотиков на основе лактобацилл.
- 2. Для предотвращения негативного влияния психологических изменений на репродуктивное здоровье у пациенток с привычным невынашиванием беременности еще на этапе прегравидарной подготовки необходимо осуществ-

лять психодиагностику повышенных уровней ситуативной и личностной тревожности, депрессии, низких показателей общей интернальности и, по показаниям, проводить соответствующие психокоррекционные мероприятия с привлечением клинических психологов и психотерапевтов.

3. У беременных с привычным невынашиванием беременности рекомендуется определение уровней провоспалительных цитокинов (IL 1, IL 6) и маркера апоптоза (TRAIL) в сыворотке крови в 1 триместре беременности для дальнейшего расчета риска преждевременных родов по формуле:

p (преждевременных родов) = $1/(1+e^{-z})$,

где р (преждевременных родов) — это значение риска наступления преждевременных родов; е — основание натуральных логарифмов (число Эйлера = 2,718); значение z рассчитывается по формуле: $z = 1,207 \times \Pi1 + 0,723 \times \Pi2 - 1,823 \times \Pi3 + 5,361$, где $\Pi1$, $\Pi2$, $\Pi3$ — уровни содержания провоспалительных цитокинов (IL 1, IL 6) и маркера апоптоза (TRAIL) в сыворотке крови в 1 триместре беременности у женщин с отягощенным анамиезом.

Список работ, опубликованных по теме диссертации

Публикации в журналах, включенных в перечень изданий, рекомендованных BAK Минобрнауки $P\Phi$ для публикации научных результатов диссертаций

- 1. Досова С.Ю. Психоэмоциональное состояние и личностные характеристики женщин с привычным невынашиванием беременности / С.Ю. Досова, Е.А. Евстифеева, С.И. Филиппченкова, И.И. Стольникова // Вестник национального медико-хирургического центра им. Н.И. Пирогова. − 2018.- Т.13, № 2. − С.107-109.
- 2. Досова С.Ю. Исследование маркеров повреждения головного мозга и цитокинов у пациенток с привычным невынашиванием беременности / С.Ю. Досова, И.И. Стольникова, Н.Н. Слюсарь // Российский вестник акушерагинеколога. 2019.-Т.19, № 5. -С.13-17.
- 3. Досова С.Ю. Исследование вагинального микробиома женщин с привычным невынашиванием беременности, а также спектра выделяемых ими газовых сигнальных молекул / С.Ю. Досова, И.И. Стольникова, В.М. Червинец, Ю.В. Червинец // Патологическая физиология и экспериментальная терапия. 2020.- Т.64, № 1.- С.84-90.
- 4. Пат. 2701109 Российская Федерация, МПК G01N33/68 Способ оценки риска преждевременных родов у женщин с привычным невынашиванием беременности / Радьков О.В., Дадабаев В.К., Стольникова И.И., Досова С.Ю.; заявитель и патентообладатель ФГБОУ ВО Тверской государственный медицинский университет Министерства здравоохранения Российской Федерации (RU) 2107109 C1; заяв.27.12.2018; опуб. 24.09.2019.

Публикации в журналах, сборниках, материалах конференций, тезисы докладов 1. Досова С.Ю. Психосоматические предикторы привычного невынашивания беременности / С.Ю. Досова, Е.А. Евстифеева, С.И. Филиппченкова, И.И. Стольникова // В книге: Психосоматическая медицина в России: достижения и перспективы - 2017. Сборник тезисов III Ежегодной межвузовской научнопрактической конференции. Москва. – 2017.- С.34-35.

- 2. Досова С.Ю. Привычное невынашивание беременности: актуальность, причины и последствия / С.Ю. Досова, Е.Ю. Захарова, А.А. Рузьянова // Тверской медицинский журнал. 2017. № 3.- С.92-94.
- 3. Досова С.Ю. Особенности течения беременности и перинатальные показатели у женщин с привычным невынашиванием беременности / С.Ю. Досова, В.А. Зверева, А.А. Лаптева, А.С. Розова, И.В. Елисеева // Тезисы 65-й Всероссийской межвузовской студенческой научной конференции с международным участием. «Молодежь, наука, медицина». Тверь. 2019.- С.385-386.
- 4. Досова С.Ю. Особенности психологического состояния женщин с привычным невынашиванием беременности // В книге: Диалектика достоинства: личностные, социальные и профессиональные константы. Материалы III Международной научно-практической конференции студентов, магистрантов, аспирантов и молодых ученых. Тверь. 2018. С.163-166.
- 5. Досова С.Ю. Осложнения и исходы беременности у женщин с привычным невынашиванием беременности / С.Ю. Досова, В.А. Зверева, А.А. Лаптева, А.С. Розова, И.В. Елисеева // Тезисы 65-й Всероссийской межвузовской студенческой научной конференции с международным участием. «Молодежь, наука, медицина». Тверь. 2019.- С.189.
- 6. Досова С.Ю. Исследование вагинального микробиома здоровых женщин / С.Ю., Досова, И.И. Стольникова, В.М. Червинец, Ю.В. Червинец // Проблемы медицинской микологии. -2019. -T.21, № 2.- C.65.
- 7. Досова С.Ю. Вагинальный микробиом здоровых женщин / С.Ю. Досова, И.И. Стольникова, В.М. Червинец, Ю.В. Червинец // Бюллетень Оренбургского научного центра УрО РАН. 2019. № 3. С.1-8.
- 8. **Досова С.Ю.** Особенности иммунологического статуса у пациенток с привычным невынашиванием беременности // Тезисы LXXX научнопрактической конференции с международным участием. СПб. -2019. С.11.
- 9. **Досова С.Ю.** Вагинальный микробиом здоровых женщин // Тезисы национального медицинского инновационного форума «Алмазовский молодежный медицинский форум». СПб. 2019. С.38-39.
- 10. Досова С.Ю. Роль вагинального микробиома в патогенезе привычного невынашивания беременности // Тверской медицинский журнал. 2020.- № 2.- С.5-15.

СПИСОК СОКРАЩЕНИЙ

СПКЯ- синдром поликистозных яичников

BDNF - Brain derived neurotrophic factor

CNTF - Ciliary neurotrophic factor

P - Pain

RP – Role-Physical functioning

RE – Role-Emotional

TRAIL - Tumor related apoptosis-inducing ligand